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Abstract

Inference regarding trends in climatic data seriesluding comparisons across
different data sets as well as univariate trendiBgg@nce tests, is complicated by
the presence of serial correlation and step-chaimgg® mean. We review recent
developments in the estimation of heteroskedagtaniid autocorrelation robust
(HAC) covariance estimators as they have beenegppd linear trend inference,
with focus on the Vogelsang-Franses (2005) nonpetrg&enapproach, which
provides a unified framework for trend covariansémeation robust to unknown
forms of autocorrelation up to but not includingtumots, making it especially
useful for climatic data applications. We extend Yogelsang-Franses approach
to allow general deterministic regressors including case where a step-change
in the mean occurs at a known date. Additional eegprs change the critical
values of the Vogelsang-Franses statistic. We dextvasymptotic approximation
that can be used to simulate critical values. V@ alutline a simple bootstrap
procedure that generates valid critical values pn@lues. The motivation for
extending the Vogelsang-Franses approach is aicapph that compares climate
model generated and observational global temperatata in the tropical lower-
and mid-troposphere from 1958 to 2010. Inclusioraahean shift regressor to
capture the Pacific Climate Shift of 1977 causgsaagntly significant observed
trends to become statistically insignificant, arejection of the equivalence



between model generated and observed data trermssofor much smaller
significance levels (i.e. is more strongly rejegted
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1 Introduction

Referring to Figure 1, do the two series have #rmaestrend? A comparison of the simple linear
trend coefficients might suggest they do, but ¢yesu differs fromy, in that the former is
steadily trending while the latter is a trendlessies with a single discrete step. If the
comparisons were conducted over the og-posts intervals, they might indicate a significant
difference of trends. In cases where a series @vknto have undergone a step-change at a
specific point in time, failure to account for it the trend comparison model might lead to biased
conclusions. Figure 1 shows a case in which sustawould overstate the agreement between
the series, but other conceptual examples coultbbstructed in which the failure to account for
a step-change could overstate the difference.

A key requirement for valid trend comparison metho that they account for the
autocorrelation properties of time series data emwelation between series. McKitrick et al.
(2010) critique some standard methods that rely aorirst order autoregression (AR1)
specification. They recommend the multivariate dremethod of Vogelsang and Franses (2005)
(VFO5) as a robust alternative and apply it to adet@bservation comparison in the tropical
troposphere. The trend model in that case is thelsiform:

Yo =& tbt+u, 1)
whereu; , the random errors, is assumed to be covariamatesary (in which casg; is labeled
a trend stationary series, that is, stationary ugnoval of a linear trend, if one is present),
i=1,...n denotes the number of time series (different dataces)t = 1,...,T is the time period.

Here we are interested in an extension that alfowa shift in the mean:

Y« =& +g,DU, +bt+u,, (2)



where DU, is an indicator variable that takes the valueriOrpgo some cut-off dateJ, (the

break date), and 1 thereafter. Hence, for seriegOLS estimation of (2) yields an estimated
intercept ofg priorto T, and 4 + g, thereafter. Model (2) may be an appropriate sjpation

for time series subject to changes in measuringpetgnt at a known point in time, such as when
weather stations are moved from one location tdhempor mercury thermometers are replaced
with electronic ones; or when satellites in rens#asing applications are replaced, etc.

An important feature to note about model (2) id the are assuming, is known ahead of time
and is not estimated using the data set itself. Wheis a parameter to be estimated, a search

algorithm may be used in which a criterion suchsam of squared residuals is minimized.
However it is not straightforward to determinegjf is significant, since under the null hypothesis

(represented by equation (1)) the paramé@ieis not identified. Andrews (1993) and Hansen

(1996) discuss the asymptotic distribution of tefsitistics when the parameter measuring the
change point is only identified under the altewmtiLikewise we are assuming that there is
known to be only a single value @f in the sample. If there can be many change paintise

data and the break dates are known, then we siagjllyadditional mean shift dummy variables
to the model. If one thinks mean shifts occur fesgly and with randomness, then there would
be additional difficulties because the range ofsgme specifications could, in principle, include
the case in which the mean changes by a randomrdrabaach time step, which is equivalent to
a random walk, or unit root processyifhas a unit root component, inference in models(it)
(2) becomes more complicated. More importantlys difficult to give a physical interpretation
to a unit root component of a temperature series.Nills (2010) for a discussion of temperature
trend estimation when a random walk is a possilel@ment of the specification.

The trend estimator used in this application is aygtlicable to data with unit root components,
and we are only considering cases where thereas/krio be a single step-like change in the
data of unknown magnitude. The particular exampégein uses the Hadley and RICH
radiosonde records (see next section) for the lowed mid-troposphere levels in the tropics.
The exogenous event is the 1977-78 Pacific Clirs&i#, an oceanic circulatory system change
during which basin-wide wind stress and sea surfaogperature anomaly patterns reversed,
causing an abrupt step-like change in many weathservations, including in the troposphere,
as well as in other indicators such as fisherigshceecords (see Seidel and Lanzante 2004,
Powell Jr. and Xu 2011).

Estimation of trends using (1) is a routine caltala and it may hardly seem possible that there
is something new to be said on the subject, bdadh the last few years has seen some very
useful methodological innovations for the purpo$eceamputing robust confidence intervals,
trend significance and trend comparisons in thegmwee of autocorrelation of unknown form.



Ordinary least squares (OLS) is the appropriatdhatefor estimating the slope coefficiemt A

common method to obtain valid coefficient varianeto fit an autoregressive-moving average
(ARMA) error model with respective lag parametg@ndq (e.g. Hamilton 1994). When applied
carefully, the ARMA approach vyields uncorrelatedideals and supports valid inferences.
However there are some practical and theoretipatdtions. First, even for a single series, the
search process can be extremely cumbersome. There allogether,p+q possible lag
coefficients, requiring the evaluation of*2 models. Using daily or monthly data, where
significant lags can extend over 12 months or mdnes quickly becomes computationally
infeasible. Second, a trend comparison may invdleeens of individual series, compounding
the dimension problem. Imposing a simplifying asption (such as AR1) as a practical remedy
may lead to misspecification. Third, estimationaotomplete ARMA®,q) error model uses up
p+q degrees of freedom, and if test statistics are theasignificance boundary this may distort
the results. Finally, the ARMAYqg) model imposes a specific structure on the autacances,
and in cases where the data exhibit long or comiplers of dependence, this may be restrictive.

Hence there is considerable benefit for researcherdbecome more familiar with the
nonparametric variance estimator approach derirggd Epectral representations. These methods
have found wide application in econometrics andrite, but are less used in applied climatic or
geophysical papers although nonparametric appreaeiere proposed by Bloomfield and
Nychka (1992) and further examined by Woodward @naly (1993) and Fomby and Vogelsang
(2002) for the univariate case. As far as we knbleKitrick et al. (2010) is the first empirical
climate paper to use nonparametric variance esomatethods in multivariate settings.

The nonparametric approach turns out be relatisighple computationally, despite being based
on rather complex underlying theory: for full trewnts see Andrews (1991), Kiefer and
Vogelsang (2005), Newey and West (1987), Sun, ipsiland Jin (2008) and White and

Domowitz (1984). The main advantage is that a sisglecification is robust to general forms of
autocorrelation (and heteroskedasticity) up to,fmitincluding, nonstationarity.

2  Statistical Background and Motivation
To provide some background and intuition for thas&amiliar with robust inference methods in

the presence of serial correlation in a multivarsetting, we focus on a model even more simple
than model (1):

Yi =& T Uy. (3)



It is assumed thati, is a mean zero time series in which case E(y, . FQr the purpose of

matrix representations the natural organizatido idenote rows by the time indeand columns
by the data source index However the matrix representation of the stai@ttheory becomes
easier if we transpose the data so that the coluem®sent time. We can then refer to time
series of column vectorsy, = (Y, Youre-Yo)G @=(a,a,,...,a,)¢ andu, = (Uy,Uy,...,u,,)C.

Rewrite the model as
y, =a+u,
and suppose we are interested in testing linearatsns about the means,, of the form:
Ho:Ra=r, H;:Ralr,

whereR andr are, respectivelyg” n andq” 1 matrices of known constants. We require that
g£n and thatR have full rank (ank(R) = q). The natural estimator afis the vector of

sample averages, i.e. the OLS estimator giveA byy =T * tT:lyt.

To understand the statistical propertiesaodnd to derive robust tests bf,, some assumptions
about the mean zero time series vectprare needed. Assume thatis covariance stationary
with n” n autocovariance matrices given by

G = E(uug)).

It is well known thatG ; = G¢ . In the case ofi =0, G is the cross-section variance covariance
matrix of theu, .

.. . . - _ _ R T .
Trivial algebra gives the relationshib=a+u wheret =T .Y, . Becausey, is mean zero,

it obviously follows thatd is an unbiased estimatoE(a) =a. What is the variance of?

Computing the variance-covariance matrix af is straightforward given the covariance
stationarity assumption:

var(d) = E[(&- a)(&- a)¢= Eund=TE[ u)( w4

t=1 t=1



The product of the sums inside the expectation lmarorganized by how far apart in time
elements of the first sum are from elements inseond sum. There afie terms of the form
u,ug, which have expectatiog(u,uf) = G, T - 1 terms of the formu,u¢, (for t =2,3,....,T ) with

expectationE(u,uf,) = G, T - 1 terms of the formu,uf,, with expectationE(u,ug,;) =G, = (.
In general for jj =12,....,T- 1, G andC{ appeafT - j times in the variance formula leading to

Var(a) =T *E[( ' u,)( ' u)¢

=T2[TG+(T- DG +GY+(T- 2)(G +CPY +..+ (T~ (T - V)G, +GL,)]
ST G+ GG+ (1 DG +EH (1 TG+ )

I T-1
=T Gb"'

=1

(1- ?j)(Gj +Gp) .

Letting W, =G, + :(1 _ri)(Gj +Gf) we have the more compact expression

Var(d) =T 'W,. (4)

If one were willing to make the strong assumptibattu, is a vector of normally distributed
random variables, then it directly follows th@atis normally distributed:

a~N(aT'W,),
and underH, it follows that
Ra- r = Ra- Ra=R(a- a)~ N(0,T 'RW, R9.
One could tesH, using thenfeasibleF statistic
F.. =(Ra- r¢T 'RW;R¢ *(Ra- r)/q.

This F -statistic is infeasible becausé; is unknown. Because the numerator fgf is a
guadratic form involving a” 1 vector of mean zero normal random variables aadrtherse of

the vector's variance-covariance matrix, we obtheresult that undeH,, F,

n

¢ ~ cclq where



¢? is a chi-square random variable withdegrees of freedom. The null hypothesis would be

q
rejected at thea significance level ifF , >cv, wherecv, is the right tail critical value from a

cZlg random variable.

To make thisF -statistic feasible, a proxy (or estimator) is resébr W, . A natural estimator of
W, is given by

R . T . R R .
W, =G+ (1-Ti)(e,+caﬁa, Ge=T* g, 5)

=1
where(, =y, - 4.Using W, in place ofW; leads to theF -statistic proposed by VFO5:
VF = (Ra- r)¢T 'RW.R¢ (Ra- r)/a. (6)

Because\?VT is constructed without assuming a specific modedenial correlation,\?VT is in the
class of nonparametric spectral estimatorg\of

Obviously, \7VT is a relatively complicated function of the dataadait is very difficult to

characterize the exact distribution WT or VF even if one is willing to make the strong
assumption thau, is normally distributed. Instead, asymptotic thyew used to generate an

approximation for\?VT and the null distribution o¥/F . The key tool in obtaining an asymptotic
approximation folVF is a functional central limit theorem (FCLT) fdvet scaled partial sums of
u,. A FCLT is an extension of the ideas behind theearfamiliar central limit theorem (CLT).

Recall thata =a+0 in which case we hava- a=u. Scaling byﬁ gives
JT(a- a)=+Tu.

Under some regularity conditions, if T:JGJ('”‘)‘<¥ where G™ is the I,m element of the
matrix G;, a CLT holds foru:

Fa=T 4,6 NOW, @)

t=1



d
where ® denote convergence in distribution aé= G + T:l(GJ +Gt . The matrixW is the

asymptotic variance of/Tu and is often called the long run varianceupf W is also directly
related to the zero frequency spectral densityimafru, . Using the CLT delivers a useful result
for (Ra- r) whenH, is true:

—d
JT(RA- 1) =+T(Ra- Ra) = RVT (4- @) = RYTu® RN(0O,W) ~ N(0,RWRQ)
This result in turn leads to the approximation
(Ra- r) » N(O, T 'RWRY.

If it were the case thafV, were a consistent estimator W, then VF would converge in
distribution to acj/q random variable and the same critical value wdnddised folVF as for

F. . It turns out that\?VT iS not a consistent estimator W and at first glance this would seem
make theVF statistic useless in practice. However, it istreddy easy to show that whiI\{*\/T is
not a consistent estimator &, it does converge in distribution to a random iwathat is
proportional toWw but otherwise does not depend on unknown quastifibis property of\7vT
means that the/F statistic can be used to tebl, becauseVF can be approximated by a
random variable that does not depend on unknowenpeters.

It is in establishing the limit oﬁvT that the FCLT plays a key role. A FCLT is, intudly, a
collection of CLTs for sums ofi, indexed by the proportion of data used to constiue sums.
Define the partial sum time series as the summatian up to timet:

=1

Take a real number from the interval[0,1] and let[cT] denote the integer part aff . The
observations =1,2,...[cT] comprise the first" proportion of the data set. If we evalu&@eat
t=[cT], we have

[cT]

%cT] = ut’

t=1



which is the sum of the first™ proportion of the data. For a given valueopfthe quantity
[cTI® ¥ asT ® ¥ ; therefore if we scals,,, by [cT]"** we can apply the CLT to obtain

[CT] S, ® N(OW).

12

Alternatively, we if scale byf ** we obtain the result

12 [cT] e 12 d 1
TS = E [cT] Sa®c N(0,W) = N(0,cW).

For a given value af, the scaled partial sums af satisfy a CLT. These limits hold pointwise in

c. The FCLT is a stronger statement that says tbileation of CLTs, as indexed hy, hold
jointly and uniformly inc and that the family of limiting normal random vdniies are in fact a
well known stochastic process called a Wiener med@r standard Brownian motion). Not
surprisingly, the FCLT requires slightly strongessamptions foru, than a CLT. For example,

the condition T:O‘Gflm)‘<¥ is strengthened to Tzlj‘Gf'm)‘<¥ which requires the

autocovariances to shrink faster to zerojascreases.
For the remainder of the paper, we assume that & kGlds for T *?S;, which we write as
TS LW,(0), (8)

where  denotes weak convergence in distributibnjs matrix square root ofv, i.e. W=LL<(
andW,(c) is ann” 1 vector of Wiener processes that are independeead other. For a given

value of c, W(c) ~N(O,cl,) where |, is an n" n identity matrix. Wiener processes are
correlated across but have independent increments (non-overlappiffgrences inw(c) are
independent). Essentially(c) is a vector of continuous time random walks. Beeatlne FCLT
is a stronger result than the CLT, the result pdfrectly follows from the FCLT:

_ T
JT(8-a)=Tu=T" u =TS LW,(1)~N(O,LI L%=N(OW. (9)
t=1
Using the FCLT, it is straightforward to determihe asymptotic behavior cﬁ\/T. The first step
is to write \7vT as a function oé = tjzlﬁj . It has been shown by Kiefer and Vogelsang (2002)
that equation (5) can be simplified as



A ~ T-1 i “ T-1,
W =G+ 1(1- Ti)(q +c;]¢):2T'2t1$S«¢- (10)
]: =
Note that formula (10) requires thélr =0which holds as long intercepts are included in the

model. Using the FCLT, the limit of **S_;, is easy to derive:

12& 1/2 el 1/2 (et A 1/2 fett A
TS =T™ G =T (y,-8=T" (a+y,- 3
t=1 t=1 =1
[cT]
=-|—-1/2 ut _ T-1/2[CT](é_ a) =T-1l2§cT] _ [CT_T] —\/?(é.' a)
t=1

LW, (c)- rLW, (1) =L (W,(c)- cW,(1))°® LB, (c).

The stochastic procesB, (c) , is the well known Brownian bridge. Using thisukgor T'l’zém
and the continuous mapping theorem, it follows that

~ T-l ~ ~
W, =27 (T2§)(T2§9 2L 'B,(c)B,(c)tc ¢

t=1

We see that whil&\, does not converge t&= LL ¢, it does converge to a random matrix that is
proportional toL L ¢.

Establishing the limit oVF is now simple:

VF = (Ra- 1) ¢T *RW, R§ *(Ra- r)/q
= JT(Ra- r)§RW. R VT (Ra- r)/g
= (RVTU)$T 'RW. R RVT u/g
(RLW, (1)) §R2L :Bn (c)B, (c)®lcL RE*RLW, (1)/q.

While not obvious at first glance, the restrictioatrix, R, drops from the limit. Because Wiener
processes are Gaussian (normally distributed)aticembinations of Wiener processes are also
Wiener processes. Thereforigl,. W, (c) is aq” 1 vector of Wiener processes and we can rewrite

RLW,(c) asL'W,(c) whereL" is theq” g matrix square root oRLL R¢, i.e. L'L" = RLL R¢.
Similarly, we can rewriteRLB (c) as L'B,(c) where B (c) =W, (c)- cW,(1). BecauseR is
assumed to be full rank, it follows thht is full rank and is therefore invertible. We have

10



VE  (RLW,(1)4R2L B, (0)B,(C)tc RY*RLW,(1)/g
= (L'W,(1)§2L" B, (c)B,(0)&cL"]*L'W, (1)/g

=W, (1)§2 _B, (c)B, ()& W, (1)l

and theL" matrices drop out becauseé is invertible.

The limit of VF does not depend on unknown parameters. The ligné iquadratic form
involving a vector of independent standard normaaldom variablesyw, (1), and the inverse of

- 1 . - .
the random matrix qu(c)Bq(c)(‘dc. Becausew, (1) is independent oB,(c) for all ¢, W, (1) is
independent o :Bq(c)Bq(c)ddc and the limit ofVF is similar in spirit to anF random variable

but its distribution is nonstandard. The randomrixag :Bq(c)Bq(c)ddc can be viewed as an

approximation to the randomness Hf?VT R¢ whereasW, (1) approximates the randomness of

JT (Ra- r). Because the asymptotic distribution \6F is nonstandard, asymptotic critical

values need to be computed using numerical methdtts.discuss two methods in the next
section.

3  Extension of the VF Approach

3.1 Statistical Model and Test Statistics

As will become clear in the subsequent discusdiua Jimiting behavior ofW, , and hence the

VF statistic, depends on the deterministic trendaesgprs included in the model. VF05 analyzed
model (1) but those results do not directly applyrtodels (2) or (3). In this section we extend
the VFO5 approach to a more general setting titiidie models (1), (2) and (3) as special cases.

We consider the model
Yi = bidy +ady +uy, (11)

whered,, is a single deterministic regressor amd is ak” 1 vector of additional deterministic
regressors. Defining th&” n matrix d=(d,,d,,...,d,), model (7) can be written in vector
notation as

11



Y, = bdy, + 4, +u,. (12)

Notice that model (1) is obtained fdp, =t, 6, =b andd, = 1, d =&, model (2) is obtained
for d, =t, b =b and d, =(1,DU,), d =(a,0,)¢ and model (3) is obtained fad, = , 1
b, =a andd, = O

Note that we are assuming that each time seriesheasame deterministic regressors. This is

needed for th&/F statistic to be robust to unknown heteroskedagtand serial correlation. In
some applications it might be reasonable to modeiesof the series as having different trend

functions. In that case, we can simply includedin the union of trend regressors across all the
series. This will result in a loss of degrees eefiom but in many applications the regressors

will be similar across series. So, the loss in degrof freedom will often be small and this is a
small price to pay for robustness to heteroskedstind autocorrelation.

As before, the model is estimated by OLS equatiprequation. Because the parameters of

interest are the vectab, we express the OLS estimator bf using the “partialling out” result,
aka the Frisch-Waugh result (see Davidson and Mauiti, 1993 and Wooldridge, 2005) as
follows. Let am denote the OLS residuals from the regressiod pfon d,,. The OLS estimator
of b can be expressed as

b= dZ2  dyyi. (13)

and it follows directly that

The OLS residuals for model (12) can be written as

A A

l]t =Y - det - dalt’ (14)
where 6 and d are the OLS estimators @f and @ using OLS equation by equation. L‘fAtr

be defined as before using (10) but with given by (14). TheVF statistic for testing
H,:Rb=r is given by

12



-1
T _ 1

VF=(Rb-1n¢ d2 RWMRE (Rb-r) (15)

t=1

3.2 Asymptotic Approximations

In this section we derive the asymptotic limit\d which will provide an approximation that can
be used to generate critical values. We continuastume that the scaled partial sumauof

follow the FCLT given by (8) and we need to makenscassumptions about the deterministic
trend regressors. To that end, assume that tharsdalarf;; , and ak” k matrix, #,;, such that

[cT] c [cT] c
T%y d,®  fo(s)ds, TY%, d,® fi(s)ds

t=1 t=1

10
01’
f,(s)=@A1(s>/))¢ where/ =T, /T and1(s>/)equals 1 fors>/ and O otherwise. Define
the function

For example, for model (2), =t, ¢, =T, f,(s)=s andd, =(1,DU,)¢, t;; =

0= 60 LOLOE LOLOs ).

It it easy to show that

[eT] _ . T - 1~
TY%, d,® Ofo(s)ds, TYhs d2® 0f(f(s)ds

t=1 t=1

In writing down the limit of\?VT it is covenient to stack the deterministic regoessnto a single
column vectord, whered¢ = (d,,df) . Define the combined scaling matrix

t 0
t- - or 1 k

Twn 0
(k+1Y (k+1) A

It immediately follows that

13



[cT] c
TY%, d® f(s)ds

t=1

where f (s)¢= (f,(s), f,(5)9).

Using similar but slightly more complicated algelas in the previous section, we obtain the
following results:

1

~ d ~ - ~
TEARE-NO L T(e)%ds  To(s)dw,(9)

and
~ c , 1, 1 1 *
RT S LdW,(s9)-  L'dW(s)f(s)¢  f(s)f(s)tls  T(s)ds® L B, (C),
where
f _c 1 1 -1
B, (¢) = 0dV\/q(s)- OdV\/q(s)f(s)tt Of(s)f(s)ttls 01‘(s)dsg
and

~ d .
RW, R 2L" B! (9B (9"
Combining these results gives the limit\&fF :

~ T Y - -
VF =Tt (RO-1)¢ T2 d2  RW,RE Trit(Rb-r)g

t=1

d 1 ( -1

~ - ~ — -1
® L' To(9%ds  fo(9aW,(9  T(9%ds 2L B! (9B (9EL

1

L feds  T(9dw(9) fq

( 1 12

T(9aw(9 2 BI(9B!(9Us  Ty(9ds

1/2

= f(9%ds T(9dw,(s) /g

Using well known properties of Wiener processeflibws that

14



1

1~ ” 1~
0fo(s)zds fo(8)dW,(s) =Z, ~N(O,1,),

which allows us to write

d -1
VF® Z§ 2 B (9B (9Ws Z,/q (16)

It can be shown that the normal vector,, is independent of the random matrix,

2:qu (S)Bqf (s)@®s. Therefore, the limit ofVF is similar to anF random variable but is

nonstandard and depends on the deterministic mes the model via thBJ (s) stochastic
process. The critical values &F depend on what regressors are includedlirbut do not
depend on which regressor is placeddjp (the regressor of interest for hypothesis testifQy

example, one uses the same critical values fointp#ite equality of trend slopes or testing the
equality of intercepts or testing the equalitymdircept shifts in model (2).

In the case where one restriction is being tesged], we can define a-statistic as

VF, = RO-T 17)

and its limit is given by

VF,® —— : (18)

\/2 OBlf (s)B, (s)Ws
The VF statistic can be used to test one-sided hypothdds#g VF to test two-sided
hypotheses is exactly equivalent to usifg.

Obtaining the critical values of the nonstandardrggptic random variables defined by (16) and
(18) is straightforward using Monte Carlo simulatiorethods that are widely used in the
econometrics and statistics literatures. In the cdsnodel (2), the location of the mean shilft,

affects the form ofd, and hence the form of (s). Therefore, the location of the mean shift

affects the asymptotic critical values¥F andVF,. In the application/ = 0.358. For this case
we simulated the asymptotic critical values\@ and VF, for testing one restrictiong(=1)

15



which we tabulate in Table 1. The Wiener process dipgiears in the limiting distribution is
approximated by the scaled partial sums of 1,0af N(0,1) random deviates. The vecids)

is approximated using (IL(t > 0.358T1), t/T)(for t=1,2,....T. The integrals are approximated by
simple averages. 50,000 replications were used. &&drsm Table 1 that the tails of thé
statistic are fatter than the tails of a standamanmal random variable and the right tail of ¥E
statistic has fatter tails thana random variable.

3.3 Bootstrap Critical Values and p-values

What should an empirical practitioner do when caiticalues are needed for other specifications
of the trend function? If carrying out simulationk the asymptotic distributions is not easily

accomplished using standard statistical packagesylternative is to use a simple bootstrap
approach as follows:

1. For eachi take the OLS residualsji, from (11) (see (14)) and sample with replacement

from G,,G,, .G, to generate a bootstrap serigs,,...,0; . Let y, =(; denote a bootstrap
resampled series foy, .

2. For each, estimate model (11) by OLS using in place ofy, . Let 5: and 5’, denote the
OLS estimators and le& =y, - 'd, +d 'd, denote the OLS residuals. L&t denote then” 1

vector & = (&,,&,,...,.&,)¢and leth" denote then” 1 vector b" = (b, ,b;,....b6.)¢

3. Compute\?\lfr using (5) with& in place ofd,. The equivalent form given by (10) can also be
used and may be faster to compute.

4. Compute the bootstrap versionsvéi or VF, as follows:

T, T Rb'
VF" =(Rb")¢ d2 RW.R¢ (Rb')g, VF = -
t=1 T T .
\/ di  RW;R¢
t

=1

5. Repeat Steps 1 throughN} times whereN; is a relatively large (and usually odd) integer.
This generatedN, random draws fronvF™ or VF, .
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6. Sort theN, values of VF~ from smallest to largest and I&F [1],VF [2],....VF [Ny ]
indicate the sorted values. Do likewise 10, . For theVF statistic the right tail critical value
for a test with significance leve is given by VF'[(1- a)N, ] where the integer part of
(1- @)N; is used if(1- @)Ng in not an integer. For a left tail test usivig , the critical value is

given byVF, [aN,] and for a right tail test the critical value ivgn byVF, [(1- a)N;].

7. Bootstrapp -values can be computed by computing the frequef®$F~ values that exceed
the value oiVF from the actual data.

Note that by construction, the true value &f is zero. ThereforeRb6™ =0, i.e. r =0 in the
bootstrap samples and=" andVF," are computed using=0 to ensure that the null holds for

VF" and VF' . Those familiar with bootstrap methods will notitett the resampling scheme

used in Step 1 does not reflect the serial coroglavith a series or the correlation across series
because an i.i.d. resampling method is being uBedauseVF and VF' are based on HAC

estimators and their asymptotic null distributiods not depend on unknown correlation
parametersVF~ and VF~ fall within the general framework considered by Gdves and

Vogelsang (2011) where it was shown that the simpleyaore, i.i.d. bootstrap will generate
valid critical values. No special methods, suchlasking, are required here. The formal results
implied by the theory of Gongalves and Vogelsang {2@te that

6z
\/2 OBlf (s)B, (s)Ws

, d 1 -1 .
VF' ® zgzOB; (s)B, (5)®s  Z /g, VF,

In other words, the bootstrap statistics have Hraeslimits as th&/F andVF, statistics under

the null hypothesis. Therefore, the bootstrapaaitvalues are equivalent to the approximations
given by (16) and (18).

4  Data and Methods

The application here is to data from the lower- amid-troposphere (LT, MT respectively),
where we will compare trends from a large suitgerieral circulation models (GCMSs) to those
observed in two radiosonde records over the 1938 26terval using monthly data. McKitrick
et al. (2010) present results from the post-197&wal where mean breaks were not warranted.
Karl et al. (2006) and Soden and Held (2005) dis¢he particular importance of examining the
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tropical troposphere for assessing GCM performali¢e. will show that the inclusion of the
mean shift dummy variable causes the trend slopd®tome insignificant at the 5% level. In
comparison of trends between GCM generated datadid model data) and observed data (LT,
MT) we find significantly different trends with avithout the inclusion of the dummy variable
but the significance levels where we can rejectriiui of equal trends is much smaller (more
significant) with the mean shift dummy included.

Throughout this section the trend slopes are thanpeters of interest. Therefore, for both
models (1) and (2) we always saj}, =t, in which caseb, =b . For model (1)d, = land for

model (2) d, =(1,DU,)C with the mean shift set at January 1978. Iliatdenote the OLS

estimator of b, for a given time series using either model (1jmmdel (2) and Ieti’ denote the
OLS estimator ofd . TheVF standard error is given by

~ T land _1 ~ .
s€b) = d Wi,
t=1

where \7V‘T is computed with (5) (or equivalently (10)) usiag from (14). Letcy,,sdenote the
2.5% right tail critical value of the asymptoticsttibution of VF, . For model (1)cv,,; = 6. 482
(see Table 1 of VFO5; thelr, statistic) and for model (2}v,,,- =7. 03@ee Table 1). A 95%

confidence interval (Cl) is computed 551 se(li)x:vo_ozs.

4.1 Climate Model Series and Observation Data SeseTrends

All data are averages over the tropics (20N to 208¢ GCM runs were compiled for McKitrick

et al. (2010). There were 57 runs from 23 modetsefich of the lower troposphere (LT) and
mid-troposphere (MT). Each model uses prescribedirfg inputs up to the end of the "20
century climate experiment (20C3M, see Santer.e2@05), and most models include at least
one extra forcing such as volcanoes or land usge&ions forward after 2000 use the A1B
emission scenario. Tables 2 and 3 report, for theahd MT layers respectively, the climate
models, the extra forcings, the number of runsacheensemble mean, estimated trend slopes in
the cases with and without mean shifts, ®ktstandard errors.

We used two observational temperature series. TdohAH radiosonde series is a set of MSU-
equivalent layer averages published on the HadEnti@ web site(Thorne et al. 2005). We use

! hitp:/iwww.metoffice.gov.uk/hadobs/hadat/msu/aniestadat_msu_tropical.txt.
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the 2LT layer to represent the GCM LT-equivalend &#me T2 layer to represent the GCM MT-
equivalent. The Radiosonde Innovation Composite éfggnization (RICH) series is due to
Haimberger et al. (2008) and was supplied by Johnis§ (pers. comm.) in LT- and MT-
equivalent forms. The last two lines of Tables @ 8rreport the estimated trend slopes and VF05
standard errors for the two observed temperaturesse

Figures 2 and 3 display the observed LT and MTdsenespectively, with the least squares trend
lines shown. The estimated trends are 0.13 and G/tiécade in the LT and 0.09 and 0.11
C/decade in the MT. Allowing for a mean shift (stg@ange) at 1977 yields Figures 4 and 5. The
LT trends fall to 0.06 and 0.09 C/decade and thetMids fall to -0.01 and 0.04 C/decade. Thus
about half of the positive LT trend in Figure 3 damattributed to the one-time change at 1977-
78 and nearly all the MT change is likewise accedrior by the step-change. Consequently, the
trend comparison between models and observaticedsrte take into account the discontinuity.

Figure 6 plots all the estimated trend slopes aloitly their Cls. The top panel (a) leaves out the
mean shift and the bottom panel (b) includes it Todel-generated trends are grouped on the
left with the CI's shown as the shaded region. reads are ranked from smallest to largest and
the numbers beside each marker refer to the GCMbrur(see Table 2 for names). The two
trends on the right edge are, respectively, theléyagihd RICH series. The range of model runs
and their associated CI's clearly overlap with tha$ the observations. In that sense we could
say there is a visual consistency between the m@ial observations. However, that is too weak
a test for the present purpose, since the rangedgtl runs can be made arbitrarily wide through
choice of parameters and internal dynamical schermed even if the reasonable range of
parameters or schemes is taken to be constrainedhpirical or physical grounds, the spread of
trends in Figure 6 (spanning roughly 0.1 to 0.4eCAtle) indicates that it is still sufficiently wide
as to be effectively unfalsifiable. Also, if we leathe comparison on the range of model runs
rather than some measure of central tendencyimipsssible to draw any conclusions about the
models as a group, or as an implied methodologyndJa range comparison, the fact that in
Figure 6a models 8, 5 and 16 are reasonably ctosieet observational series does not provide
any support for models 2, 3 and 4, which are famyawVe want to pose the trend comparison in
a form that tells us something about the behaviolurthe models as a group, or as a
methodological genre, and this requires a multatartesting framework.

4.2 Multivariate Trend Comparisons
For each layer we now treat the 23 climate modeegeed series and the 2 observational series

as ann=25 panel of temperature series. We estimate mad¢lsnd (2) using the methods
described in Section 3. The parameters of inteagst the trend slopesd{ =t). We are

interested in testing the null hypothesis that akerageof the trend slopes in the 23 climate

19



model generated series is the same aavbeagetrend slope of the observed series. Placing the
observed series in positioir24,25, the restriction matrices for this null hypothesig

Table 4 presents th¥F statistics for the equivalence of trends in thenalie models and
observed data. Also reported are ¥He statistics for testing the significance of the indual
trends of the observed temperature series. Asymidtical values are provided in the table and
significance is indicated as described in the taldle also compute bootstrap p-values for the
tests using the method outlined in Section 3.3.u8&x 1499 bootstrap replications.

In the trend model without mean shifts, the zermendrhypothesis is rejected at the 1%
significance level for all 4 observed series, iatiing strong evidence of a significant warming
trend over the 1958-2010 interval. A test that ¢hmate models, on average, predict the same
trend as the observational data sets is rejectéigei. T layer at 5% and in the MT layer at 1%
significance.

But when we add the mean-shift term at 1978, thaegaof theVF statistics for testing the zero
trend-hypothesis drop substantially. The criticallues forVF are slightly larger than in the case
without the mean-shift dummy. We see that only ohé¢he observed series has a significant
trend, and only at the 10% level. When the one-fumep is not modeled, the increase in the
series from the jump is spuriously associated wightrend slope. This spurious association is no
longer present when the mean shift dummy is inaude

The test of equivalence of trends betweens theatdirmodels and observed data is more strongly
rejected when the mean shift dummy is included.id¢othat bootstrap p-values drop to
essentially zero in this case. This finding is swtprising because, as is clear in Tables 2 and 3,
while the estimated trend slopes decrease for ltserged series when the mean shift dummy is
included, the estimated trend slopes of the climadedel series are not systematically affected by
the mean shift dumni{.Therefore, there is a greater discrepancy betweerclimate model
trends and the observed trends.

% This form weights each model equally, even thosigime models supplied more than one run.
Adjusting theR matrix so that models are weighted according éonlhimber of runs does not change our
conclusions, and in fact makes the model-obsemaguivalence test reject more strongly.

® The climate-models do not explicitly model the ifacClimate Shift and so the mean shift coeffidien

has no special meaning for the climate model déoa surprisingly, the estimated mean shift coedints
were positive in 11 cases and negative in 12 ferctmate model series.
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5 Conclusions

Heteroskedasticity and autocorrelation robust (HAGYariance matrix estimators have been
adapted to the linear trend model, permitting rolmferences about trend significance and trend
comparisons in data sets with complex and unknoutocarrelation characteristics. Here we
extend the multivariate HAC approach of Vogelsand Branses (2005) to allow more general
deterministic regressors in the model. We show that asymptotic (approximating) critical
values of the test statistics of Vogelsang and $aarf2005) are nonstandard and depend on the
specific deterministic regressors included in thedel. These critical values can be simulated
directly. Alternatively, we outline a simple bootgt method for obtaining valid critical values
and p-values.

The empirical focus of the paper is a comparisontrehds in climate model-generated
temperature data and corresponding observed tetopemdata in the tropical troposphere. Our
empirical innovation is to model a level shift imetobserved data corresponding to the Pacific
Climate Shift that occurred in 1977-78. With redpecthe Vogelsang Franses (2005) approach,
this amounts to adding a mean shift dummy to thelehavhich requires a new set of critical
values which we provide.

As our empirical findings show, the detection oftrand in the tropical lower- and mid-
troposphere data over the 1958-2010 interval igimgant on the decision of whether or not to
include a mean-shift term at January 1978. If #rentis included, a time trend regression with
error terms robust to autocorrelation of unknowmfondicates that the trend observed over the
1958-2010 interval is not statistically significaint either the LT or MT layers. Most climate
models predict a larger trend over this intervahtis observed in the data. We find a statistically
significant mismatch between climate model trenas$ abservational trends whether the mean-
shift term is included or not. However, with thefsterm included the null hypothesis of equal
trend is rejected at much smaller significanceley@uch more significant).
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