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Abstract 
Inference regarding trends in climatic data series, including comparisons across 
different data sets as well as univariate trend significance tests, is complicated by 
the presence of serial correlation and step-changes in the mean. We review recent 
developments in the estimation of heteroskedasticity and autocorrelation robust 
(HAC) covariance estimators as they have been applied to linear trend inference, 
with focus on the Vogelsang-Franses (2005) nonparametric approach, which 
provides a unified framework for trend covariance estimation robust to unknown 
forms of autocorrelation up to but not including unit roots, making it especially 
useful for climatic data applications. We extend the Vogelsang-Franses approach 
to allow general deterministic regressors including the case where a step-change 
in the mean occurs at a known date. Additional regressors change the critical 
values of the Vogelsang-Franses statistic. We derive an asymptotic approximation 
that can be used to simulate critical values. We also outline a simple bootstrap 
procedure that generates valid critical values and p-values. The motivation for 
extending the Vogelsang-Franses approach is an application that compares climate 
model generated and observational global temperature data in the tropical lower- 
and mid-troposphere from 1958 to 2010. Inclusion of a mean shift regressor to 
capture the Pacific Climate Shift of 1977 causes apparently significant observed 
trends to become statistically insignificant, and rejection of the equivalence 
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between model generated and observed data trends occurs for much smaller 
significance levels (i.e. is more strongly rejected). 

 
JEL Codes: C14; C32; C52; Q54 
Keywords: Autocorrelation; trend estimation; HAC variance matrix; global warming; model 
comparisons 
 

 
 

1 Introduction  
 
Referring to Figure 1, do the two series have the same trend? A comparison of the simple linear 
trend coefficients might suggest they do, but clearly y1 differs from y2 in that the former is 
steadily trending while the latter is a trendless series with a single discrete step. If the 
comparisons were conducted over the pre-s or post-s intervals, they might indicate a significant 
difference of trends. In cases where a series is known to have undergone a step-change at a 
specific point in time, failure to account for it in the trend comparison model might lead to biased 
conclusions. Figure 1 shows a case in which such a test would overstate the agreement between 
the series, but other conceptual examples could be constructed in which the failure to account for 
a step-change could overstate the difference.  
 
A key requirement for valid trend comparison methods is that they account for the 
autocorrelation properties of time series data and correlation between series. McKitrick et al. 
(2010) critique some standard methods that rely on a first order autoregression (AR1) 
specification. They recommend the multivariate trend method of Vogelsang and Franses (2005) 
(VF05) as a robust alternative and apply it to a model-observation comparison in the tropical 
troposphere. The trend model in that case is the simple form: 
 
 ,itiiit utbay ++=  (1) 
 
where uit , the random errors, is assumed to be covariance-stationary (in which case yit is labeled 
a trend stationary series, that is, stationary upon removal of a linear trend, if one is present), 
i=1,…,n denotes the number of time series (different data sources), t = 1,…,T  is the time period. 
Here we are interested in an extension that allows for a shift in the mean: 
 
 ,ititiiit utbDUgay +++=  (2) 
 



 3 

where tDU   is an indicator variable that takes the value 0 prior to some cut-off date, bT  (the 
break date),  and 1 thereafter. Hence, for series i, OLS estimation of (2) yields an estimated 
intercept of iâ  prior to bT  and ii ga ˆˆ +   thereafter. Model (2) may be an appropriate specification 
for time series subject to changes in measuring equipment at a known point in time, such as when 
weather stations are moved from one location to another, or mercury thermometers are replaced 
with electronic ones; or when satellites in remote sensing applications are replaced, etc.  
 
An important feature to note about model (2) is that we are assuming bT  is known ahead of time 

and is not estimated using the data set itself. When bT  is a parameter to be estimated, a search 
algorithm may be used in which a criterion such as sum of squared residuals is minimized. 
However it is not straightforward to determine if ig  is significant, since under the null hypothesis 

(represented by equation (1)) the parameter bT  is not identified. Andrews (1993) and Hansen 
(1996) discuss the asymptotic distribution of test statistics when the parameter measuring the 
change point is only identified under the alternative. Likewise we are assuming that there is 
known to be only a single value of bT  in the sample. If there can be many change points in the 
data and the break dates are known, then we simply add additional mean shift dummy variables 
to the model. If one thinks mean shifts occur frequently and with randomness, then there would 
be additional difficulties because the range of possible specifications could, in principle, include 
the case in which the mean changes by a random amount at each time step, which is equivalent to 
a random walk, or unit root process. If yit has a unit root component, inference in models (1) and 
(2) becomes more complicated. More importantly, it is difficult to give a physical interpretation 
to a unit root component of a temperature series. See Mills (2010) for a discussion of temperature 
trend estimation when a random walk is a possible element of the specification.  
 
The trend estimator used in this application is not applicable to data with unit root components, 
and we are only considering cases where there is known to be a single step-like change in the 
data of unknown magnitude. The particular example herein uses the Hadley and RICH 
radiosonde records (see next section) for the lower- and mid-troposphere levels in the tropics. 
The exogenous event is the 1977-78 Pacific Climate Shift, an oceanic circulatory system change 
during which basin-wide wind stress and sea surface temperature anomaly patterns reversed, 
causing an abrupt step-like change in many weather observations, including in the troposphere, 
as well as in other indicators such as fisheries catch records (see Seidel and Lanzante 2004, 
Powell Jr. and Xu 2011).  
 
Estimation of trends using (1) is a routine calculation, and it may hardly seem possible that there 
is something new to be said on the subject, but in fact the last few years has seen some very 
useful methodological innovations for the purpose of computing robust confidence intervals, 
trend significance and trend comparisons in the presence of autocorrelation of unknown form. 
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Ordinary least squares (OLS) is the appropriate method for estimating the slope coefficient ib . A 
common method to obtain valid coefficient variances is to fit an autoregressive-moving average 
(ARMA) error model with respective lag parameters p and q (e.g. Hamilton 1994). When applied 
carefully, the ARMA approach yields uncorrelated residuals and supports valid inferences. 
However there are some practical and theoretical limitations. First, even for a single series, the 
search process can be extremely cumbersome. There are, altogether, p+q possible lag 
coefficients, requiring the evaluation of 2p+q models. Using daily or monthly data, where 
significant lags can extend over 12 months or more, this quickly becomes computationally 
infeasible. Second, a trend comparison may involve dozens of individual series, compounding 
the dimension problem. Imposing a simplifying assumption (such as AR1) as a practical remedy 
may lead to misspecification. Third, estimation of a complete ARMA(p,q) error model uses up 
p+q degrees of freedom, and if test statistics are near the significance boundary this may distort 
the results. Finally, the ARMA(p,q) model imposes a specific structure on the autocovariances, 
and in cases where the data exhibit long or complex forms of dependence, this may be restrictive.  
 
Hence there is considerable benefit for researchers to become more familiar with the 
nonparametric variance estimator approach derived from spectral representations. These methods 
have found wide application in econometrics and finance, but are less used in applied climatic or 
geophysical papers although nonparametric approaches were proposed by Bloomfield and 
Nychka (1992) and further examined by Woodward and Gray (1993) and Fomby and Vogelsang 
(2002) for the univariate case. As far as we know, McKitrick et al. (2010) is the first empirical 
climate paper to use nonparametric variance estimation methods in multivariate settings. 
 
The nonparametric approach turns out be relatively simple computationally, despite being based 
on rather complex underlying theory: for full treatments see Andrews (1991), Kiefer and 
Vogelsang (2005), Newey and West (1987), Sun, Phillips and Jin (2008) and White and 
Domowitz (1984). The main advantage is that a single specification is robust to general forms of 
autocorrelation (and heteroskedasticity) up to, but not including, nonstationarity. 
 
 

2 Statistical Background and Motivation 
    
To provide some background and intuition for those unfamiliar with robust inference methods in 
the presence of serial correlation in a multivariate setting, we focus on a model even more simple 
than model (1): 

 
 .= itiit uay +  (3) 
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It is assumed that itu  is a mean zero time series in which case )(= iti yEa . For the purpose of 
matrix representations the natural organization is to denote rows by the time index t and columns 
by the data source index i. However the matrix representation of the statistical theory becomes 
easier if we transpose the data so that the columns represent time. We can then refer to time 
series of column vectors: ),...,,(= 21 ¢ntttt yyyy , ),...,,(= 21 ¢naaaa  and ),...,,(= 21 ¢ntttt uuuu .  
 
Rewrite the model as 
 

 ,= tt uay +  
 
and suppose we are interested in testing linear restrictions about the means, a , of the form: 

 
 ,:,=: 10 rRaHrRaH ¹  

 
where R  and r  are, respectively, nq´  and 1´q  matrices of known constants. We require that 

nq £  and that R  have full rank ( qRrank =)( ). The natural estimator of a is the vector of 

sample averages, i.e. the OLS estimator given by t

T

t
yTya �-

1=

1==ˆ .  

 

To understand the statistical properties of â  and to derive robust tests of 0H , some assumptions 

about the mean zero time series vector, tu , are needed. Assume that tu  is covariance stationary 
with nn ´  autocovariance matrices given by 

 
 ).(= jttj uuE -¢G  

 
It is well known that jj G¢G- = . In the case of 0=j , 0G  is the cross-section variance covariance 

matrix of the itu . 
 

Trivial algebra gives the relationship uaa +=ˆ  where t

T

t
uTu �-

1=

1= . Because tu  is mean zero, 

it obviously follows that â  is an unbiased estimator: aaE =)ˆ( . What is the variance of â? 
Computing the variance-covariance matrix of â  is straightforward given the covariance 
stationarity assumption: 

 

 ].))([(=][=])ˆ)(ˆ[(=)ˆ(
1=1=

2 ¢¢¢-- ��-
t

T

t
t

T

t

uuETuuEaaaaEaVar  
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The product of the sums inside the expectation can be organized by how far apart in time 
elements of the first sum are from elements in the second sum. There are T  terms of the form 

ttuu ¢, which have expectation 0=)( G¢ttuuE , 1-T  terms of the form 1-¢ttuu  (for Tt 2,3,...,= ) with 

expectation 11 =)( G¢-ttuuE , 1-T  terms of the form 1+¢ttuu  with expectation 111 ==)( G¢G¢ -+ttuuE . 

In general for j 1,,...,2,1 -= Tj  jG  and jG¢ appear jT -  times in the variance formula leading to 

 

 ]))([(=)ˆ(
1=1=

2 ¢��-
t

T

t
t

T

t

uuETaVar  

 [ ])1))(((...)2)(()1)((= 1122110
2

--
- G¢+G--++G¢+G-+G¢+G-+G TTTTTTTT  

 ��

�
��

� G¢+G
-

-++G¢+G-+G¢+G-+G --
- ))(

1
(1...))(

2
(1))(

1
(1= 1122110

1
TTT

T
TT

T  

 .))((1=
1

1=
0

1
�
�

�
�
�

�
G¢+G-+G �

-
-

jj

T

j T
j

T  

Letting ))((1=
1

1=0 jj

T

jT T
j

G¢+G-+GW � -
 we have the more compact expression 

 
 .=)ˆ( 1

TTaVar W-  (4) 
 
If one were willing to make the strong assumption that tu  is a vector of normally distributed 

random variables, then it directly follows that â  is normally distributed: 
 
 ),,(~ˆ 1

TTaNa W-  
 
and under 0H  it follows that 

 
 .)(0,)ˆ(=ˆ=ˆ 1 RRTNaaRRaaRraR T ¢W--- -~  

 
One could test 0H  using the infeasible F  statistic 

 
 .)/ˆ(][)ˆ(= 11

inf qraRRRTraRF T -¢W¢- --  
 
This F -statistic is infeasible because TW  is unknown. Because the numerator of infF  is a 
quadratic form involving a 1´q  vector of mean zero normal random variables and the inverse of 

the vector's variance-covariance matrix, we obtain the result that under 0H , qF q /2
inf c~  where 



 7 

2
qc  is a chi-square random variable with q  degrees of freedom. The null hypothesis would be 

rejected at the a  significance level if acvF >inf  where acv  is the right tail critical value from a 

qq /2c  random variable. 

 
To make this F -statistic feasible, a proxy (or estimator) is needed for TW . A natural estimator of 

TW  is given by 
 

 ,ˆˆ=ˆ),ˆˆ)((1ˆ=ˆ
1=

1
1

1=
0 jtt

T

jt
jjj

T

j
T uuT

T
j

-
+

-
-

¢G¢G¢+G-+GW ��  (5) 

  
where .ˆ=ˆ ayu tt -  Using TŴ  in place of TW  leads to the F -statistic proposed by VF05: 

 

 .)/ˆ(]ˆ[)ˆ(= 11 qraRRRTraRVF T -¢W¢- --  (6) 
 
Because TŴ  is constructed without assuming a specific model of serial correlation, TŴ is in the 
class of nonparametric spectral estimators of W. 
 
Obviously, TŴ is a relatively complicated function of the data, and it is very difficult to 

characterize the exact distribution of TŴ  or VF  even if one is willing to make the strong 
assumption that tu  is normally distributed. Instead, asymptotic theory is used to generate an 

approximation for TŴ  and the null distribution of VF . The key tool in obtaining an asymptotic 
approximation for VF  is a functional central limit theorem (FCLT) for the scaled partial sums of 

tu . A FCLT is an extension of the ideas behind the more familiar central limit theorem (CLT). 

Recall that uaa +=ˆ  in which case we have uaa =ˆ - . Scaling by T  gives 
 

 .=)ˆ( uTaaT -  
 

Under some regularity conditions, if ¥G� ¥
<)(

0=

lm
jj

 where )(lm
jG  is the ml,  element of the 

matrix ,jG  a CLT holds for u : 

 

 ),(0,=
1=

1/2 W®�- NuTuT
d

t

T

t

 (7) 
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where 
d

®  denote convergence in distribution and )(=
1=0 jjj

G¢+G+GW � ¥
. The matrix W is the 

asymptotic variance of uT  and is often called the long run variance of tu . W is also directly 

related to the zero frequency spectral density matrix of tu . Using the CLT delivers a useful result 

for )ˆ( raR -  when 0H  is true: 

 

 )(0,)(0,=)ˆ(=)ˆ(=)ˆ( RRNRNuTRaaTRRaaRTraRT
d

¢WW®--- ~  
 
This result in turn leads to the approximation  
 
 ).(0,)ˆ( 1 RRTNraR ¢W»- -

 
 
If it were the case that TŴ  were a consistent estimator of W, then VF  would converge in 

distribution to a qq /2c  random variable and the same critical value would be used for VF  as for 

infF . It turns out that TŴ  is not a consistent estimator of W and at first glance this would seem 

make the VF  statistic useless in practice. However, it is relatively easy to show that while TŴ  is 
not a consistent estimator of W, it does converge in distribution to a random matrix that is 
proportional to W but otherwise does not depend on unknown quantities. This property of TŴ  
means that the VF  statistic can be used to test 0H  because VF  can be approximated by a 

random variable that does not depend on unknown parameters. 
 
It is in establishing the limit of TŴ  that the FCLT plays a key role. A FCLT is, intuitively, a 
collection of CLTs for sums of tu  indexed by the proportion of data used to construct the sums. 

Define the partial sum time series as the summation of tu  up to time t: 

 

 .=
1=

j

t

j
t uS �  

 
Take a real number c from the interval [0,1] and let ][cT  denote the integer part of cT . The 
observations ][1,2,...,= cTt  comprise the first thc  proportion of the data set. If we evaluate tS  at 

][= cTt , we have 

 ,=
][

1=
][ t

cT

t
cT uS �  
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which is the sum of the first thc  proportion of the data. For a given value of c, the quantity 
¥®][cT  as ¥®T ; therefore if we scale ][ cTS  by 1/2][ -cT  we can apply the CLT to obtain 

 ).(0,][ ][
1/2 W®- NScT

d

cT  

 
Alternatively, we if scale by 1/2-T  we obtain the result 

 

 ).(0,=)(0,][
][

= 1/2
][

1/2
1/2

][
1/2 WW®�

	



�
�

 -- cNNcScT

T
cT

ST
d

cTcT  

 
For a given value of c, the scaled partial sums of tu  satisfy a CLT. These limits hold pointwise in 

c. The FCLT is a stronger statement that says this collection of CLTs, as indexed by c, hold 
jointly and uniformly in c and that the family of limiting normal random variables are in fact a 
well known stochastic process called a Wiener process (or standard Brownian motion). Not 
surprisingly, the FCLT requires slightly stronger assumptions for tu  than a CLT. For example, 

the condition ¥G� ¥
<)(

0=

lm
jj

 is strengthened to ¥G� ¥
<)(

1=

lm
jj

j  which requires the 

autocovariances to shrink faster to zero as j  increases. 
 
For the remainder of the paper, we assume that a FCLT holds for ][

1/2
cTST -  which we write as 

 
 ),(][

1/2 cWST ncT L�-  (8) 

 
where �  denotes weak convergence in distribution, L  is matrix square root of W, i.e. L ¢LW=  
and )(cWn  is an 1´n  vector of Wiener processes that are independent of each other. For a given 
value of c, )(0,)( ncINcW ~  where nI  is an nn´  identity matrix. Wiener processes are 
correlated across c but have independent increments (non-overlapping differences in )(cW  are 
independent). Essentially )(cW  is a vector of continuous time random walks. Because the FCLT 
is a stronger result than the CLT, the result in (7) directly follows from the FCLT: 

  

.)(0,=)(0,(1)===)ˆ( 1/2

1=

1/2 WL¢LL�- -- � NINWSTuTuTaaT nnTt

T

t

~  (9) 

 
Using the FCLT, it is straightforward to determine the asymptotic behavior of TŴ . The first step 

is to write TŴ  as a function of j

t

jt uS ˆ=ˆ
1=� . It has been shown by Kiefer and Vogelsang (2002) 

that equation (5) can be simplified as 
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.ˆˆ2)ˆˆ)((1ˆ=ˆ

1

1=

2
1

1=
0 tt

T

t
jj

T

j
T SST

T
j ¢=G¢+G-+GW ��

-
-

-

 (10) 

Note that formula (10) requires that 0ˆ =TS which holds as long intercepts are included in the 

model. Using the FCLT, the limit of ][
1/2 ˆ

cTST -  is easy to derive: 
 

)ˆ(=)ˆ(=ˆ=ˆ
][

1=

1/2
][

1=

1/2
][

1=

1/2
][

1/2 auaTayTuTST t

cT

t
t

cT

t
t

cT

t
cT -+- ��� ----  

)ˆ(
][

=)ˆ]([= ][
1/21/2

][

1=

1/2 aaT
T
cT

STaacTTuT cTt

cT

t

-�
	



�
�

--- --- �  

).((1)))((=(1))( cBcWcWWrcW nnnnn Lº-LL-L�  
 
The stochastic process, )(cBn , is the well known Brownian bridge. Using this result for ][

1/2 ˆ
cTST -  

and the continuous mapping theorem, it follows that 
 

 .)()(2)ˆ)(ˆ(2=ˆ 1

0

1/21/2
1

1=

1 L ¢¢L�¢W �� --
-

- dccBcBSTSTT nntt

T

t
T  

 
We see that while TŴ  does not converge to L ¢LW= , it does converge to a random matrix that is 
proportional to L ¢L . 
 
Establishing the limit of VF  is now simple: 
 

qraRRRTraRVF T )/ˆ(]ˆ[)ˆ(= 11 -¢W¢- --

 

       qraRTRRraRT T )/ˆ(]ˆ[)ˆ(= 1 -¢W¢- -  

        quTRRRTuTR T /]ˆ[)(= 11 -- ¢W¢  

       
.(1)/])()(2[)(1)( 1

1

0
qWRRdccBcBRWR nnnn L¢L ¢¢L¢L� -�  

 
While not obvious at first glance, the restriction matrix, R , drops from the limit. Because Wiener 
processes are Gaussian (normally distributed), linear combinations of Wiener processes are also 
Wiener processes. Therefore, )(cWR nL  is a 1´q  vector of Wiener processes and we can rewrite 

)(cWR nL  as )(cWq
*L  where *L  is the qq´  matrix square root of RR ¢L ¢L , i.e. RR ¢LLLL * ='* . 

Similarly, we can rewrite )(cBR nL  as )(cBq
*L  where (1))(=)( qqq cWcWcB - . Because R  is 

assumed to be full rank, it follows that *L  is full rank and is therefore invertible. We have 
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 qWRRdccBcBRWRVF nnnn (1)/])()(2[)(1)( 11

0
L¢L ¢¢L¢L� -�  

 qWdccBcBW q
'

qqq (1)/])()([2)(1)(= 11

0

*-*** LL¢L¢L �  

 ,(1)/])()([2)(1= 11

0
qWdccBcBW qqqq

-¢¢ �  
 

and the *L  matrices drop out because *L  is invertible. 
 
The limit of VF  does not depend on unknown parameters. The limit is a quadratic form 
involving a vector of independent standard normal random variables, (1),qW  and the inverse of 

the random matrix dccBcB qq )()(2
1

0
¢� . Because (1)qW  is independent of )(cBq  for all c, (1)qW  is 

independent of dccBcB qq )()(2
1

0
¢�  and the limit of VF  is similar in spirit to an F  random variable 

but its distribution is nonstandard. The random matrix dccBcB qq )()(2
1

0
¢�  can be viewed as an 

approximation to the randomness of RR T ¢Ŵ  whereas (1)qW  approximates the randomness of 

)ˆ( raRT - . Because the asymptotic distribution of VF  is nonstandard,  asymptotic critical 
values need to be computed using numerical methods. We discuss two methods in the next 
section. 
 

 

3 Extension of the VF Approach 
 

3.1 Statistical Model and Test Statistics 
 
As will become clear in the subsequent discussion, the limiting behavior of TŴ , and hence the 
VF  statistic, depends on the deterministic trend regressors included in the model. VF05 analyzed 
model (1) but those results do not directly apply to models (2) or (3). In this section we extend 
the VF05 approach to a more general setting that include models (1), (2) and (3) as special cases. 
 
We consider the model 

 ,= 10 ittitiit uddy +¢+db  (11) 
 
where td0  is a single deterministic regressor and td1  is a 1´k  vector of additional deterministic 

regressors. Defining the nk ´  matrix ),...,,(= 21 ndddd , model (7) can be written in vector 
notation as 
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 .= 10 tttt uddy +¢+db  (12) 

 
Notice that model (1) is obtained for td t =0 , ii b=b  and 1=1td , ,= ii ad  model (2) is obtained 

for td t =0 , ii b=b  and )(1,=1 ¢tt DUd , ),(= ¢iii gad  and model (3) is obtained for 1=0td , 

ii a=b  and 0=1td . 
 
Note that we are assuming that each time series has the same deterministic regressors. This is 
needed for the VF  statistic to be robust to unknown heteroskedasticity and serial correlation. In 
some applications it might be reasonable to model some of the series as having different trend 
functions. In that case, we can simply include in td1  the union of trend regressors across all the 
series. This will result in a loss of degrees of freedom but in many applications the regressors 
will be similar across series. So, the loss in degrees of freedom will often be small and this is a 
small price to pay for robustness to heteroskedasticity and autocorrelation. 
 
As before, the model is estimated by OLS equation by equation. Because the parameters of 
interest are the vector b , we express the OLS estimator of b  using the “partialling out” result, 
aka the Frisch-Waugh result (see Davidson and MacKinnon, 1993 and Wooldridge, 2005) as 
follows. Let td0

~
 denote the OLS residuals from the regression of td0  on td1 . The OLS estimator 

of b  can be expressed as 
 

 ,
~~

=ˆ
0

1=

1

2
0

1=
tt

T

t
t

T

t

ydd ��
-

�
	



�
�



b  (13) 

and it follows directly that 

 .
~~

=ˆ
0

1=

1

2
0

1=
tt

T

t
t

T

t

udd ��
-

�
	



�
�



- bb  

 
The OLS residuals for model (12) can be written as 
 

 ,ˆˆ=ˆ 10 tttt ddyu db ¢--  (14) 
 
where b̂  and d̂  are the OLS estimators of b  and d  using OLS equation by equation. Let TŴ  
be defined as before using (10) but with tû  given by (14). The VF  statistic for testing 

rRH =:0 b  is given by 
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 .)/ˆ(ˆ~
)ˆ(=

11

2
0

1=

qrRRRdrRVF Tt

T

t

-
�
�
�

�

�
�
�

�
¢W�

	



�
�


¢-

--

� bb  (15) 

 
 
3.2 Asymptotic Approximations 
 
In this section we derive the asymptotic limit of VF which will provide an approximation that can 
be used to generate critical values. We continue to assume that the scaled partial sums of tu  
follow the FCLT given by (8) and we need to make some assumptions about the deterministic 
trend regressors. To that end, assume that there is a scalar, T0t , and a kk ´  matrix, T1t , such that 
 

 ,)(0
0

0

][

1=
0

1 dssfdT
c

t

cT

t
T �� ®- t

            
.)(1

0
1

][

1=
1

1 dssfdT
c

t

cT

t
T �� ®- t  

 For example, for model (2) td t =0 , 1
0 = -TTt , ssf =)(0  and )(1,=1 ¢tt DUd , �

�

�
�
�

�
10

01
=1Tt , 

))>(1,=)(1 ¢lssf 1(  where TTb/=l  and )> ls1( equals 1 for l>s  and 0 otherwise. Define 
the function 
 

 ).()()()()()(=)(
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It it easy to show that 
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In writing down the limit of TŴ  it is covenient to stack the deterministic regressors into a single 
column vector td  where ),(= 10 ttt ddd ¢¢ . Define the combined scaling matrix 
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It immediately follows that 
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where ))(),((=)( 10 ¢¢ sfsfsf . 
 
Using similar but slightly more complicated algebra as in the previous section, we obtain the 
following results: 
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Combining these results gives the limit of VF : 
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Using well known properties of Wiener processes, it follows that 
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which allows us to write 
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It can be shown that the normal vector, qZ , is independent of the random matrix, 

dssBsB f
q

f
q )()(2

1

0
¢� . Therefore, the limit of VF  is similar to an F  random variable but is 

nonstandard and depends on the deterministic regressors in the model via the )(sB f
q  stochastic 

process. The critical values of VF  depend on what regressors are included in td  but do not 

depend on which regressor is placed in td0  (the regressor of interest for hypothesis testing). For 

example, one uses the same critical values for testing the equality of trend slopes or testing the 
equality of intercepts or testing the equality of intercept shifts in model (2). 
 
In the case where one restriction is being tested, 1=q , we can define a t -statistic as 

 

 

RRd

rR
VF

Tt

T

t

t

¢W�
	



�
�




-
-

� ˆ~

ˆ
=

1

2
0

1=

b

 

(17) 

and its limit is given by 
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The tVF  statistic can be used to test one-sided hypotheses. Using tVF  to test two-sided 
hypotheses is exactly equivalent to using VF . 
 
Obtaining the critical values of the nonstandard asymptotic random variables defined by (16) and 
(18) is straightforward using Monte Carlo simulation methods that are widely used in the 
econometrics and statistics literatures. In the case of model (2), the location of the mean shift, l , 
affects the form of td  and hence the form of )(sf . Therefore, the location of the mean shift 

affects the asymptotic critical values of VF  and tVF . In the application 0.358=l . For this case 

we simulated the asymptotic critical values of VF  and tVF  for testing one restriction ( 1=q ) 
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which we tabulate in Table 1. The Wiener process that appears in the limiting distribution is 
approximated by the scaled partial sums of 1,000 i.i.d. N(0,1) random deviates. The vector )(sf  
is approximated using (1, ,)358.0> Tt1( )/ ¢Tt for t=1,2,…,T. The integrals are approximated by 
simple averages. 50,000 replications were used. We see from Table 1 that the tails of the tVF  
statistic are fatter than the tails of a standard normal random variable and the right tail of the VF  
statistic has fatter tails than a 21c  random variable.

 
 
3.3 Bootstrap Critical Values and p-values 
 
What should an empirical practitioner do when critical values are needed for other specifications 
of the trend function? If carrying out simulations of the asymptotic distributions is not easily 
accomplished using standard statistical packages, an alternative is to use a simple bootstrap 
approach as follows: 

1.  For each i  take the OLS residuals, itû , from (11) (see (14)) and sample with replacement 
from iTii uuu ˆ,,ˆ,ˆ 21 �  to generate a bootstrap series ***

iTii uuu ˆ,...,ˆ,ˆ 21 . Let **
itit uy ˆ=  denote a bootstrap 

resampled series for ity . 
 

2.  For each i , estimate model (11) by OLS using *
ity  in place of ity . Let *

ib̂  and *
id̂  denote the 

OLS estimators and let titiitit ddy 1
*

0 'ˆˆ=ˆ dbe +- ***  denote the OLS residuals. Let *
tê  denote the 1´n  

vector )ˆ,...,ˆ,ˆ(ˆ 21
* ¢= ***

ntttt eeee  and let *b̂  denote the 1´n  vector )ˆ,...,ˆ,ˆ(=ˆ
21

* ¢***
nbbbb . 

 
3.  Compute *ˆ

TW  using (5) with *
tê  in place of tû . The equivalent form given by (10) can also be 

used and may be faster to compute.  
 

4.  Compute the bootstrap versions of VF  or tVF  as follows: 
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5.  Repeat Steps 1 through 4 BN  times where BN  is a relatively large (and usually odd) integer. 

This generates BN  random draws from *VF  or *
tVF . 
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6.  Sort the BN  values of *VF  from smallest to largest and let ][[2],...,[1], BNVFVFVF ***  
indicate the sorted values. Do likewise for tVF . For the VF  statistic the right tail critical value 

for a test with significance level a  is given by ])[(1 BNVF a-*  where the integer part of 

BN)(1 a-  is used if BN)(1 a-  in not an integer. For a left tail test using tVF , the critical value is 

given by ][ Bt NVF a*  and for a right tail test the critical value is given by ].)[(1 Bt NVF a-*  
 

7.  Bootstrap p -values can be computed by computing the frequency of *VF  values that exceed 
the value of VF  from the actual data.  

 
 

Note that by construction, the true value of *
ib  is zero. Therefore, 0=*bR , i.e. 0=r  in the 

bootstrap samples and *VF  and *
tVF  are computed using 0=r  to ensure that the null holds for 

*VF  and *
tVF . Those familiar with bootstrap methods will notice that the resampling scheme 

used in Step 1 does not reflect the serial correlation with a series or the correlation across series 
because an i.i.d. resampling method is being used. Because *VF  and *

tVF  are based on HAC 
estimators and their asymptotic null distributions do not depend on unknown correlation 
parameters, *VF  and *

tVF  fall within the general framework considered by Gonçalves and 
Vogelsang (2011) where it was shown that the simple, or naive, i.i.d. bootstrap will generate 
valid critical values. No special methods, such as blocking, are required here. The formal results 
implied by the theory of Gonçalves and Vogelsang (2011) are that 
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In other words, the bootstrap statistics have the same limits as the VF  and tVF  statistics under 

the null hypothesis. Therefore, the bootstrap critical values are equivalent to the approximations 
given by (16) and (18). 

 
4 Data and Methods 
 
The application here is to data from the lower- and mid-troposphere (LT, MT respectively), 
where we will compare trends from a large suite of general circulation models (GCMs) to those 
observed in two radiosonde records over the 1958-2010 interval using monthly data. McKitrick 
et al. (2010) present results from the post-1979 interval where mean breaks were not warranted. 
Karl et al. (2006) and Soden and Held (2005) discuss the particular importance of examining the 
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tropical troposphere for assessing GCM performance. We will show that the inclusion of the 
mean shift dummy variable causes the trend slopes to become insignificant at the 5% level. In 
comparison of trends between GCM generated data (climate model data) and observed data (LT, 
MT) we find significantly different trends with or without the inclusion of the dummy variable 
but the significance levels where we can reject the null of equal trends is much smaller (more 
significant) with the mean shift dummy included. 
 
Throughout this section the trend slopes are the parameters of interest. Therefore, for both 
models (1) and (2) we always set td t =0 , in which case ii b=b . For model (1) 1=1td , and for 

model (2) )(1,=1 ¢tt DUd  with the mean shift set at January 1978. Let ib̂  denote the OLS 

estimator of ib  for a given time series using either model (1) or model (2) and let id̂ denote the 

OLS estimator of id . The VF standard error is given by 
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where i

TŴ  is computed with (5) (or equivalently (10)) using tû  from (14). Let 025.0cv denote the 

2.5% right tail critical value of the asymptotic distribution of tVF . For model (1) 482.6025.0 =cv  

(see Table 1 of VF05; their *2t  statistic) and for model (2) 032.7025.0 =cv

 

(see Table 1). A 95% 

confidence interval (CI) is computed as .)ˆ(ˆ
025.0cvse ii ×± bb  

 
 
4.1 Climate Model Series and Observation Data Series: Trends 
 
All data are averages over the tropics (20N to 20S). The GCM runs were compiled for McKitrick 
et al. (2010). There were 57 runs from 23 models for each of the lower troposphere (LT) and 
mid-troposphere (MT). Each model uses prescribed forcing inputs up to the end of the 20th 
century climate experiment (20C3M, see Santer et al. 2005), and most models include at least 
one extra forcing such as volcanoes or land use. Projections forward after 2000 use the A1B 
emission scenario. Tables 2 and 3 report, for the LT and MT layers respectively, the climate 
models, the extra forcings, the number of runs in each ensemble mean, estimated trend slopes in 
the cases with and without mean shifts, and VF standard errors. 
 
We used two observational temperature series. The HadAT radiosonde series is a set of MSU-
equivalent layer averages published on the Hadley Centre web site1 (Thorne et al. 2005). We use 

                                                      
1 http://www.metoffice.gov.uk/hadobs/hadat/msu/anomalies/hadat_msu_tropical.txt. 
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the 2LT layer to represent the GCM LT-equivalent and the T2 layer to represent the GCM MT-
equivalent. The Radiosonde Innovation Composite Homogenization (RICH) series is due to 
Haimberger et al. (2008) and was supplied by John Christy (pers. comm.) in LT- and MT-
equivalent forms. The last two lines of Tables 2 and 3 report the estimated trend slopes and VF05 
standard errors for the two observed temperature series. 
 
Figures 2 and 3 display the observed LT and MT trends, respectively, with the least squares trend 
lines shown. The estimated trends are 0.13 and 0.16 C/decade in the LT and 0.09 and 0.11 
C/decade in the MT. Allowing for a mean shift (step-change) at 1977 yields Figures 4 and 5. The 
LT trends fall to 0.06 and 0.09 C/decade and the MT trends fall to -0.01 and 0.04 C/decade. Thus 
about half of the positive LT trend in Figure 3 can be attributed to the one-time change at 1977-
78 and nearly all the MT change is likewise accounted for by the step-change. Consequently, the 
trend comparison between models and observations needs to take into account the discontinuity.  
 
Figure 6 plots all the estimated trend slopes along with their CIs. The top panel (a) leaves out the 
mean shift and the bottom panel (b) includes it. The model-generated trends are grouped on the 
left with the CI’s shown as the shaded region. The trends are ranked from smallest to largest and 
the numbers beside each marker refer to the GCM number (see Table 2 for names). The two 
trends on the right edge are, respectively, the Hadley and RICH series. The range of model runs 
and their associated CI’s clearly overlap with those of the observations. In that sense we could 
say there is a visual consistency between the models and observations. However, that is too weak 
a test for the present purpose, since the range of model runs can be made arbitrarily wide through 
choice of parameters and internal dynamical schemes, and even if the reasonable range of 
parameters or schemes is taken to be constrained on empirical or physical grounds, the spread of 
trends in Figure 6 (spanning roughly 0.1 to 0.4 C/decade) indicates that it is still sufficiently wide 
as to be effectively unfalsifiable. Also, if we base the comparison on the range of model runs 
rather than some measure of central tendency it is impossible to draw any conclusions about the 
models as a group, or as an implied methodology. Using a range comparison, the fact that in 
Figure 6a models 8, 5 and 16 are reasonably close to the observational series does not provide 
any support for models 2, 3 and 4, which are far away. We want to pose the trend comparison in 
a form that tells us something about the behaviour of the models as a group, or as a 
methodological genre, and this requires a multivariate testing framework.  
 
4.2 Multivariate Trend Comparisons 
 
For each layer we now treat the 23 climate model generated series and the 2 observational series 
as an n=25 panel of temperature series. We estimate models (1) and (2) using the methods 
described in Section 3. The parameters of interest are the trend slopes ( td t =0 ). We are 

interested in testing the null hypothesis that the average of the trend slopes in the 23 climate 
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model generated series is the same as the average trend slope of the observed series. Placing the 
observed series in positions i=24,25, the restriction matrices for this null hypothesis are2 
 

 ��
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� --=
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23
1

,....,
23
1

,
23
1

R ,     0=r . 

  
Table 4 presents the VF statistics for the equivalence of trends in the climate models and 
observed data. Also reported are the VF statistics for testing the significance of the individual 
trends of the observed temperature series. Asymptotic critical values are provided in the table and 
significance is indicated as described in the table. We also compute bootstrap p-values for the 
tests using the method outlined in Section 3.3. We used 1499 bootstrap replications. 
 
In the trend model without mean shifts, the zero trend-hypothesis is rejected at the 1% 
significance level for all 4 observed series, indicating strong evidence of a significant warming 
trend over the 1958-2010 interval. A test that the climate models, on average, predict the same 
trend as the observational data sets is rejected in the LT layer at 5% and in the MT layer at 1% 
significance.  
 
But when we add the mean-shift term at 1978, the values of the VF statistics for testing the zero 
trend-hypothesis drop substantially. The critical values for VF are slightly larger than in the case 
without the mean-shift dummy. We see that only one of the observed series has a significant 
trend, and only at the 10% level. When the one-time jump is not modeled, the increase in the 
series from the jump is spuriously associated with the trend slope. This spurious association is no 
longer present when the mean shift dummy is included. 
 
The test of equivalence of trends betweens the climate models and observed data is more strongly 
rejected when the mean shift dummy is included. Notice that bootstrap p-values drop to 
essentially zero in this case. This finding is not surprising because, as is clear in Tables 2 and 3, 
while the estimated trend slopes decrease for the observed series when the mean shift dummy is 
included, the estimated trend slopes of the climate model series are not systematically affected by 
the mean shift dummy.3 Therefore, there is a greater discrepancy between the climate model 
trends and the observed trends. 
                                                      
2 This form weights each model equally, even though some models supplied more than one run. 
Adjusting the R matrix so that models are weighted according to the number of runs does not change our 
conclusions, and in fact makes the model-observation equivalence test reject more strongly. 
 
3 The climate-models do not explicitly model the Pacific Climate Shift and so the mean shift coefficient 
has no special meaning for the climate model data. Not surprisingly, the estimated mean shift coefficients 
were positive in 11 cases and negative in 12 for the climate model series. 
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5 Conclusions 
 
Heteroskedasticity and autocorrelation robust (HAC) covariance matrix estimators have been 
adapted to the linear trend model, permitting robust inferences about trend significance and trend 
comparisons in data sets with complex and unknown autocorrelation characteristics. Here we 
extend the multivariate HAC approach of Vogelsang and Franses (2005) to allow more general 
deterministic regressors in the model. We show that the asymptotic (approximating) critical 
values of the test statistics of Vogelsang and Franses (2005) are nonstandard and depend on the 
specific deterministic regressors included in the model. These critical values can be simulated 
directly. Alternatively, we outline a simple bootstrap method for obtaining valid critical values 
and p-values. 
 
The empirical focus of the paper is a comparison of trends in climate model-generated 
temperature data and corresponding observed temperature data in the tropical troposphere. Our 
empirical innovation is to model a level shift in the observed data corresponding to the Pacific 
Climate Shift that occurred in 1977-78. With respect to the Vogelsang Franses (2005) approach, 
this amounts to adding a mean shift dummy to the model which requires a new set of critical 
values which we provide. 
 
As our empirical findings show, the detection of a trend in the tropical lower- and mid-
troposphere data over the 1958-2010 interval is contingent on the decision of whether or not to 
include a mean-shift term at January 1978. If the term is included, a time trend regression with 
error terms robust to autocorrelation of unknown form indicates that the trend observed over the 
1958-2010 interval is not statistically significant in either the LT or MT layers. Most climate 
models predict a larger trend over this interval than is observed in the data. We find a statistically 
significant mismatch between climate model trends and observational trends whether the mean-
shift term is included or not. However, with the shift term included the null hypothesis of equal 
trend is rejected at much smaller significance levels (much more significant).  
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Figure 1. Schematic of two series to be compared. 
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Figure 2 Monthly Hadley (top) and RICH (bottom) observations in the LT layer, 1958 to 2010.  
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Figure 3 Monthly Hadley (top) and RICH (bottom) observations in the MT layer, 1958 to 2010.  
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Figure 4: LT Obs series with step changes 
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Figure 5: MT Obs series with step changes 
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Figure 6. 1958-2010 Trends and 95% CIs for 23 models (shaded region) and two balloon series 
Hadley and RICH (respectively, individual markers at right edge). a: (Left two panels) Trends 
computed without allowing for mean shift. b: (Right two panels) Mean shift term included in 
model. 
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Table 1: Asymptotic Critical Values. 
Model (2), 0.358=l , 1.=q  

% tVF  VF  

.700 1.678 11.612 

.750 2.175 14.534 

.800 2.743 18.388 

.850 3.408 23.922 

.900 4.288 32.385 

.950 5.691 49.445 

.975 7.032 68.065 

.990 8.642 97.901 

.995 9.894 123.724 
 

Note: Left tail critical values of tVF  follow by symmetry around zero. 
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Table 2: Summary of Lower Troposphere data series. 

  Simple Trend  Trend + Mean Shift 
 

Data 
Series 

Model/ Obs Name 
Extra Forcings; 
No. runs 

 
Trend 

(C/decade) 

 
 

Std Error 

  
Trend 

(C/decade) 

 
 

Std Error 
1 BCCR BCM2.0 

O; 2 0.173 0.0071 
  

0.176 
 

0.013 
2 CC;CMA3.1-T47 

NA; 5 0.347 0.0046 
  

0.345 
 

0.008 
3 CCCMA3.1-T63 

NA; 1 0.373 0.0094 
  

0.393 
 

0.015 
4 CNRM3.0 

O; 1 0.249 0.0061 
  

0.237 
 

0.011 
5 CSIRO3.0 

1 0.139 0.0087 
  

0.170 
 

0.018 
6 CSIRO3.5 

1 0.242 0.0093 
  

0.296 
 

0.014 
7 GFDL2.0 

O, LU, SO, V; 1 0.186 0.0120 
  

0.141 
 

0.024 
8 GFDL2.1 

O, LU, SO, V; 1 0.109 0.0184 
  

0.135 
 

0.032 
9 GISS_AOM 

2 0.171 0.0085 
  

0.156 
 

0.014 
10 GISS_EH 

O, LU, SO, V; 6 0.193 0.0117 
  

0.226 
 

0.017 
11 GISS_ER 

O, LU, SO, V; 5 0.178 0.0137 
  

0.207 
 

0.022 
12 IAP_FGOALS1.0 

3 0.198 0.0132 
  

0.243 
 

0.019 
13 ECHAM4 

1 0.210 0.0140 
  

0.236 
 

0.023 
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14 INMCM3.0 
SO, V; 1  0.178 0.0094 

  
0.174 

 
0.017 

15 IPSL_CM4 
1 

 
0.189 

 
0.0074 

  
0.159 

 
0.013 

16 MIROC3.2_T106 
O, LU, SO, V; 1 0.141 0.0104 

  
0.121 

 
0.017 

17 MIROC3.2_T42 
O, LU, SO, V; 3 0.210 0.0133 

  
0.233 

 
0.021 

18 MPI2.3.2a 
SO, V; 5 0.205 0.0141 

  
0.231 

 
0.023 

19 ECHAM5 
O; 4 0.204 0.0059 

  
0.198 

 
0.011 

20 CCSM3.0 
O, SO, V; 7 0.217 0.0161 

  
0.262 

 
0.024 

21 PCM_B06.57 
O, SO, V; 4 0.176 0.0060 

  
0.169 

 
0.011 

22 HADCM3 
O; 1 0.190 0.0062 

  
0.190 

 
0.011 

23 HADGEM1 
O, LU, SO, V; 1 0.226 0.0104 

  
0.205 

 
0.020 

24 HadAT 0.131 0.0090  0.055 0.020 
25 RICH 0.157 0.0083  0.092 0.016 

Notes: Each row refers to model ensemble mean (rows 1—23) or observational series (rows 24, 25). All models forced 
with 20th century greenhouse gases and direct sulfate effects. Rows 10, 11, 19, 22 and 23 also include indirect sulfate 
effects. ‘Extra forcing’ indicates which models included other forcings: ozone depletion (O), solar changes (SO), land 
use (LU), volcanic eruptions (V). NA: information not supplied to PCMDI. No. runs: indicates number of individual 
realizations in the ensemble mean. Trend slopes estimated using OLS, Std Errors computed using VF method (see 
Section 4).  
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Table 3: Summary of Mid-Troposphere data series. 
  Simple Trend  Trend + Mean Shift 
 

Data 
Series 

Model/ Obs 
Name 
Extra Forcings; 
No. runs 

 
Trend 

(C/decade) 

 
 

Std Error 

  
Trend 

(C/decade) 

 
 

Std Error 

1 BCCR BCM2.0 
O; 2 0.176 0.0060 

  
0.184  

 
0.011  

2 CC;CMA3.1-T47 
NA; 5 0.372 0.0046 

  
0.365  

 
0.008  

3 CCCMA3.1-T63 
NA; 1 0.399 0.0093 

  
0.417  

 
0.015  

4 CNRM3.0 
O; 1 0.311 0.0072 

  
0.296  

 
0.013  

5 CSIRO3.0 
1 0.108 0.0086 

  
0.139  

 
0.018  

6 CSIRO3.5 
1 0.229 0.0097 

  
0.286  

 
0.014  

7 GFDL2.0 
O, LU, SO, V; 1 0.174 0.0117 

  
0.133  

 
0.023  

8 GFDL2.1 
O, LU, SO, V; 1 0.103 0.0198 

  
0.143  

 
0.033  

9 GISS_AOM 
2 0.163 0.0081 

  
0.154  

 
0.014  

10 GISS_EH 
O, LU, SO, V; 6 0.180 0.0114 

  
0.210  

 
0.017  

11 GISS_ER 
O, LU, SO, V; 5 0.162 0.0127 

  
0.182  

 
0.021  

12 IAP_FGOALS1.0 
3 0.185 0.0125 

  
0.225  

 
0.018  

13 ECHAM4 
1 0.200 0.0131 

  
0.218  

 
0.022  
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14 INMCM3.0 
SO, V; 1  0.183 0.0100 

  
0.173  

 
0.017  

15 IPSL_CM4 
1 0.195 0.0081 

  
0.157  

 
0.013  

16 MIROC3.2_T106 
O, LU, SO, V; 1 

 
0.147 

 
0.0113 

  
0.119  

 
0.018  

17 MIROC3.2_T42 
O, LU, SO, V; 3 0.211 0.0143 

  
0.234  

 
0.023  

18 MPI2.3.2a 
SO, V; 5 0.182 0.0124 

  
0.193  

 
0.021  

19 ECHAM5 
O; 4 0.202 0.0059 

  
0.197  

 
0.011  

20 CCSM3.0 
O, SO, V; 7 0.201 0.0132 

  
0.232  

 
0.020  

21 PCM_B06.57 
O, SO, V; 4 0.161 0.0048 

  
0.136  

 
0.008  

22 HADCM3 
O; 1 0.170 0.0059 

  
0.166  

 
0.011  

23 HADGEM1 
O, LU, SO, V; 1 0.221 0.0108 

  
0.210  

 
0.021  

24 HadAT 0.087 0.0088  -0.005  0.017  
25 RICH 0.109 0.0075  0.043  0.012  

Notes same as for Table 2. 
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Table 4: Results of hypothesis tests using VF statistic with and without mean shift term at 
January, 1977. 
 
Trend Coef Null Hypothesis Test Score  Bootstrap p value 
  

No Mean Shift 
Hadley LT (0.131) trend = 0 213.6*** < 0.001 
RICH LT (0.157) trend = 0 356.1*** < 0.001 
Hadley MT (0.087) trend = 0 98.0*** 0.006 
RICH MT (0.109) trend = 0 212.4*** < 0.001 
    
LT Models = Observed 58.5** 0.029 
MT Models = Observed 121.1*** 0.005 
    
 With Mean Shift  
Hadley LT (0.055) trend = 0 7.7 0.379 
RICH LT (0.092) trend = 0 34.8* 0.075 
Hadley MT (-0.005) trend = 0 0.10 0.980 
RICH MT (0.043) trend = 0 13.1 0.266 
    
LT Models = Observed 402.1*** < 0.001 
MT Models = Observed 999.9*** < 0.001 
Notes: sample period (monthly): January 1958 to December 2010. The bootstrap p-value* is 
computed using the method described in Section 3.3 using 1499 bootstrap replications (NB = 
1499). VF Critical Values: Without Mean Shift, 20.14 (10%, denoted *) 41.53 (5%, denoted **), 
83.96 (1%, denoted ***). With Mean Shift, 32.39 (10%, denoted *), 49.45 (5%, denoted **), 
97.90 (1%, denoted ***).  
 
 


